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relatively imperfect crystals of st-aluminum oxide, 
about 0-2 mm thick. The phases of the reflections are, 
of course, well known for both materials. 

To achieve adequate resolution, a microfocus diver- 
gent X-ray beam was used. The X-ray source was a Cu 
K target; the focus was about 40 /am in diameter. At 
the take-off angles used in this work (4 to 8°), the 
effective focal spot was about 40 x 5/am. The specimen 
crystals were oriented so that the smaller dimension 
determined the resolution along the two-beam reflection 
lines shown in Fig. 6(a) and (b). The source-to-crystal 
distance was 80 mm; the specimen-to-film distance was 
1650 mm. The latter path was evacuated. 

About 25 three-beam interactions in germanium and 
aluminum have been recorded photographically, using 
Kodak Type A film.* Fig. 6(a) and (b) illustrates the 
results obtained and shows two-beam Cu K~t 1 and ~2 
(112) reflection lines. The three-beam interaction 
regions are near the centers of the photographs. In Fig. 
6(a) (positive phase) there is no significant difference 
between the intensities recorded to the left and right of 
the three-beam region. The left-right intensity dif- 
ferences calculated for negative phases are clearly dis- 
played in Fig. 6(b). In fewer than half of the photo- 
graphs were the positive-negative intensity differences 
too small to permit definitive phase assignments. Most 
of these difficulties appeared to be caused by our 
selection of relatively unfavorable triplets for study, i.e. 
cases in which the magnitudes of the three F 's  differed 
widely from one another. None of the photographs, 
however, indicated phases at variance with the known, 
correct ones. 

* The photographs were taken by Mr Po Wen Wang, to whom 
the author is deeply grateful. 

Summary 

The phases of X-ray reflections from single crystals are 
not lost when three-beam simultaneous diffraction 
occurs. They may be determined by analyzing the dis- 
tribution of the diffracted intensities about the three- 
beam point, under the conditions outlined in the 
preceding sections. It is not yet possible to indicate the 
extent to which the phase-determining methods 
described above can be applied to the 'mosaic' crystals 
usually used in crystal structure analysis. Our ex- 
perience with relatively imperfect aluminum oxide 
crystals shows that the crystals need not be ideally 
perfect. Additional work with highly imperfect crystals 
is needed. The strictly collimated and highly intense X- 
ray beams available from synchrotron sources appear 
to be ideally suited for investigations of this sort. 
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Abstract 

Complex diffraction contrast features on X-ray topo- 
graphs are often difficult to interpret by simple 
arguments. In such cases computer-simulation methods 
have frequently proved useful in understanding the 

* This paper was presented, by invitation, at the ACA Dynamical 
Diffraction Symposium held at the University of Oklahoma, 22 
March 1978, honoring Paul P. Ewald on the occasion of his 
ninetieth birthday. 

observed contrast features and in elucidating the nature 
of the defect involved. The application of computer- 
simulation methods for interpreting X-ray diffraction 
contrast at planar and line defects in crystals is out- 
lined. 

There are many instances in X-ray topography where 
detailed analyses of the various complex contrast 
effects observed are necessary. In such cases it would 
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be useful to have a simple simulation technique where 
one could vary the various diffraction and defect 
parameters to match the desired contrast features and 
thus unambiguously establish the nature of the defects 
observed. Such simulation methods have long been 
widely used in transmission electron microscopy, where 
the two-beam dynamical equations using plane waves 
and the column approximation allow rapid com- 
putation of the contrast features from defects. Such 
techniques were applied by Head, Humble, Clare- 
brough, Forwood & Morton (1973) and co-workers and 
subsequently refined by various groups, for example 
Bullough, Maher & Perrin (1971). For X-ray topog- 
raphy computer simulations have not been as widely 
used owing in large measure to the complexity of the 
calculations. Because of the large Bragg angles for X- 
rays the column approximation does not apply. 
Furthermore, as pointed out by Kato (Azaroff, 
Kaplow, Kato, Weiss, Wilson & Young, 1974), the 
plane-wave treatment is inadequate and the spherical- 
wave theory must be used. Nevertheless, some attempts 
have been made to simulate topographs, notably by 
Balibar & Authier (1967) for dislocations. These cal- 
culations have been refined by Epelboin (1974). 
Simulations of stacking faults have been published by 
Authier & Patel (1975) and with extensive refinements 
by Wonsiewicz & Patel (1976)and finally other planar 
defects such as twins and grain boundaries have been 
simulated by Katagawa, Ishikawa & Kato (1975). In 
this paper we shall deal mainly with planar defects with 
only a brief mention of line defects which are covered in 
detail in a following paper (Epelboin, 1979). Simulations 
of dislocation images for the plane-wave case have been 
given by Ishida, Miyamoto & Kohra (1976) and for the 
Bragg case by Bedynska (1973). These cases will not 
be discussed in this paper, which is confined mainly to 
the transmission geometry. 

Theory 

The dynamical diffraction problem of a crystal with a 
stacking fault has been treated by Kato, Katagawa & 
Usami (1967) and Authier & Sauvage (1966). In the 
present work we will use the treatment of Authier 
(1968), which considers all of the interference terms 
and includes absorption. The actual results of the 
dynamical-theory calculations are lengthy and involved. 
Their application has been treated in detail by Authier 
& Patel (1975). Here we outline the nature of the 
various contributions to the intensity of the section 
pattern of a stacking fault and highlight the important 
parameters. Consider (as shown in Fig. 1) the various 
contributions to the intensity at a point P on the exit 
surface of a crystal with a stacking fault. The wavefield 
(1) travelling in crystal I crosses the fault and travels in 
crystal II and arrives at P without any interbranch 

scattering. The newly created wavefield (2), which 
travels in crystal I in the direction shown but which 
suffers interbranch scattering at the fault surface, also 
contributes to the intensity at P. Finally, we have inter- 
ference between the waves that have and have not 
suffered interbranch scattering and these will also 
contribute to the intensity at P. The three contributions 
have been summarized by Patel & Authier (1975): 

I l ----= I p e r f ( l  - -  A sin z ~/2). (1) 

The contribution to the intensity in equation (1) is due 
to the original wavefields; A involves various diffraction 
and geometrical parameters and 6 = -2~rh.u, where h 
is the reciprocal-lattice vector and u is the fault vector. 
if u = 0, J = 0 and 11 = Ioerr The interference between 
the newly created wavefields is given by 

12 = B sin 2 J/2. (2) 

Finally, the interference between the old and newly 
created wavefields can be represented by 

13 = C sin 2 J/2 + D sin ~/2. (3) 

It is only the last term in equation (3) that can dis- 
tinguish between the sign of the fault vector +u. For 
appreciable contribution from this term, D, which 
depends on absorption, must be large. Hence in cases 
where the absorption factor gd  is small we will not be 
able to distinguish between +u. The details of the 
computation procedure for evaluating the intensity at 
each point on the section pattern have been given by 
Wonsiewicz & Patel (1976). Briefly, we set up a grid of 
points on the section pattern where I, ,  12, and 13 must 
be calculated. We convert the total intensity to a photo- 
graphic density through the relation p = y log I + C, 
where y is the film response. Next the data are packed 
and written on magnetic tape and the calculation moves 
on to the next line of points. The tape is used to drive a 
facsimile device which is capable of writing 10, 20, or 
40 points mm -1 by rotating a photographic film on a 
drum past a light beam whose intensity is controlled by 
the I values on the magnetic tape. 

~A 

I 

a 

B P C 
Fig. 1. X-ray paths in the crystal showing contributions to the 

intensity at point P on the exit surface. 
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Results 

I. Section topographs - asymmetric  faul ts  

An example of a simulation of a silicon crystal with a 
stacking fault taken from the work of Wonsiewicz & 
Patel (1976) is shown in Fig. 2(a) and (b). Note the 
characteristic hour-glass shape of the section pattern of 
a crystal with a stacking fault. For the same h the 
contrast of the fringe at the exit surface F H  changes 
from white to black for extrinsic and intrinsic faults 
respectively (Fig. 2a and b). In simulations not shown 
in Fig. 2 the contrast reverses when the fault vector is 
reversed (--h) for the respective faults. Thus knowing 
the fault geometry and the diffraction conditions, we 
can unambiguously determine the nature of the fault 
from its section pattern. 

which is the trace of the fault on the exit surface and 
also the apparent translation of the section pattern 
during the traverse of the X-ray beam across the fault. 
The result is shown in Fig. 2(c). For the extrinsic fault 
the first fringe is black in contrast to the white fringe on 
the corresponding section in Fig. 2(a). Thus traverse 
topographs may not in general be able to discriminate 
between the fault type since the first fringe is black for 
both extrinsic and intrinsic faults, Fig. 2(c) and (d). If 
we choose the --h geometry, the situation is normal and 
the fault can be distinguished, on the traverse topo- 
graph, the first fringe being black for extrinsic and 
white for an intrinsic fault. Evidently, the high intensity 
in the vicinity of H in Fig. 2(a) overwhelms the light 
fringe along F H  and gives rise to the apparent anomaly 
between the section and traverse patterns. 

II. Traverse topographs - asymmetric faul ts  

More commonly in X-ray topography one uses 
traverse topographs where the pattern observed on 
section topographs is integrated. We carry out such an 
integration of Fig. 2(a) along lines parallel to FH, 

EXTRINSIC INTRINSIC 

H H 

F F 

III. Experiment  - asymmetric faul ts  

An experimental section and traverse topograph of 
an extrinsic fault in silicon corresponding to the 
simulations in Fig. 2 is shown in Fig. 3. All of the 
general features of the simulation are observed experi- 
mentally. Note that the white fringe at F H  on the exit 
surface in Fig. 3(a) appears dark on the corresponding 
traverse pattern Fig. 3(b). The broad white contrast on 
the entrance surface of the transverse pattern Fig. 3(b) 
bears strong resemblance to the corresponding regions 
on the simulation (Fig. 2c). 

I (a) G I (b) G 

(c) (d) 

Fig. 2. Simulated section and traverse topographs of asymmetric 
faults in a (1_ 11) silicon crystal; Cu Kt h radiation,/ld = 3.7, h = 
i l  i, u = 111. (a) +h, --u, extrinsic fault; (b) +h, +u, intrinsic 
fault; (c) traverse corresponding to section topograph in (a); (d) 
traverse corresponding to section in (b) from Wonsiewicz & 
Patel (1976). 

IV. Simulation - symmetric faul ts  

Under the supposition that the asymmetric geometry 
of the fault might be responsible for the apparent 
anomaly observed, Wonsiewicz & Patel (1976) 
simulated symmetric faults whose traces on the 
surfaces are parallel to the traverse direction. Such a 
geometry is realized when the crystal surface is (100) 
and the fault and diffraction planes are {111 }. Under 
these conditions the simulated section and traverse 
patterns are normal, as shown in Fig. 4(a) and (b), 
where the white fringe at the exit surface on the traverse 
Fig. 4(b) corresponds to the white fringe on the section 
Fig. 4(a). Another condition under which the anomaly 
should vanish is for anomalous transmission where the 
absorption factor is large/~d ~ 10. It is apparent from 
Fig. 5(d), which simulates an asymmetric fault with 
high /~d (=10), why this should be so. The large 
intensity at the margin I H  in Fig. 5(a)-(c) has vanished 
for /~d = 10. To summarize, we expect that for 
symmetric faults and normal absorption factors values 
of /td ~ 3, the anomaly between the section and 
traverse patterns should vanish. Furthermore, the 
anomaly should also vanish for any fault when /~d 
10. 
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V. Experiment  and simulation - symmetric faul t s  

Recently Patel, Wonsiewicz & Freeland (1979) have 
tested the above hypothesis in (100) crystals of silicon, 
in which faults were introduced in a controlled manner 
by suitable heat treatment (Patel, Jackson & Reiss, 
1977). The results are shown in Fig. 6, where, for #d  = 
3.8, the fault section pattern Fig. 6(a) shows a white 
fringe while the corresponding fringe on the traverse is 
black (Fig. 6b). In this case the simulation of the 
traverse pattern does not reflect this anomaly as shown 
in Fig. 6(c) and (d). This is an unexpected result. So far 
even for asymmetric faults there has been no dis- 
crepancy between the simulated and experimental 
traverse patterns. It is only the intermediary image, 
presumably of the dislocation at the fault edge and 
visible on the left-hand side in the region outside the 
fault (Fig. 6b), that indicates that the first fringe is 
white, while along the entrance surface of the fault this 
white fringe is suppressed. Examination of the section 
pattern Fig. 6(a) shows that the region in the vicinity 
of the intersection of the incident X-ray beam with the 
fault surface is intensely dark. The simulation Fig. 6(c) 
does not show this exaggerated dark region. All of the 
other features, such as the fiat fringes in the hour-glass 
pattern, agree quite well with the simulation. When 
#d ~ 8 this anomaly persists as shown in Fig. 7. Again, 
the high intensity at H overrides the first white fringe. 
This result was not expected from the simulated section 
for an asymmetric fault a t / ld  ~_ 10 (Fig. 5d). 

Simulations of twins and grain boundaries 

Katagawa and co-workers (in preparation), using the 
theoretical approach outlined earlier, have simulated 
both twins and grain boundaries. For a Dauphin~ twin 
in quartz no displacement u is involved; only the 
structure factors in the two crystals separated by the 
fault are different. Simulations of Dauphin6 twins 
shown in Fig. 8 were produced in large format on a 

teleprinter and reduced to give the fine detail observed. 
The experimental section topograph of a Dauphin6 twin 
is on the extreme left, to the right there are various 
simulations corresponding to deliberately induced dis- 
placements A along the twin plane. Note that A = 0 
gives the pattern for an ideal twin, which does not 
correspond to the experiment. Perhaps the simulation in 
which the two halves of the crystal are displaced by 
A = zt/4 corresponds most closely with the observation 
(when A = 2zr, the two halves of the crystal are dis- 
placed by a lattice distance). Note that the experiment 
again clearly shows more intensity along the inter- 
section of the fault and the incident X-ray beam. 
Similar observations were pointed out earlier for the 
case of stacking faults. 

For an ideal tilt boundary again the displacement 
A -- 0. However the tilt can vary and is expressed by the 
factor x = AO/AO B, where zio n is the half-width of the 
Bragg reflection and A0 the boundary tilt. Simulations 
of such tilt boundaries are shown in Fig. 9. The degree 
to which the observed pattern changes for small 
changes in A0 is remarkable and makes the topo- 
graphic method very sensitive to tilts which are 
fractions of the half-width of the Bragg reflection. 

(a) 

III IIII II . . . . . .  

i I!1 IIHI I I 

(b) 

Fig. 4. Simulated section patterns of symmetric faults in a (100) 
silicon crystal; Cu Ka I radiation,/~d = 3.7, h-- I11, u = l i i. 
(a) Extrinsic fault, +h, --u; (b) traverse pattern corresponding to 
section in (a). 

H 

(a) (b) 

\ 

h 

/ 

FAULT 

I 

Fig. 3. Experimental topographs; Cu Ka radiation, gd = 3-7. (a) Section topograph, + h = 111. (cf. simulation Fig. 2a); (b) traverse topo- 
graph corresponding to (a) (cf. simulation in Fig. 2c). 
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Simulation of dislocations 

The first simulations of dislocations were attempted by 
Balibar & Authier (1967). These calculations were 
performed by integrating Takagi's (1962)equations in 

G 
(a) (b/ 

(c) (d) 

Fig. 5. Simulated section topograph illustrating the effect of 
ab_s_orption on the fringe pattern; Cu Ktq radiation, h = 111, u = 
111. The crystal thickness is held at 0.26 mm and la is varied. (a) 
/ t d =  0; (b)/ad = 1.0; (c)lad = 3.7; (d) a d  = 10.0. 

a crystal containing a dislocation. Using isotropic 
elasticity theory, B alibar & Authier (1967) were able to 
reproduce the major features observed experimentally. 
In Fig. 10 we show the progress of such simulations. 
Fig. 10(a) is the experimental section topograph of a 
dislocation. Fig. 10(b) shows the first hand simulation 

(a). Subsequent refinements by Y. Ill o f  the defect in 
Epelboin led finally to the simulation in Fig. 10(d) 
performed on an IBM experimental teleprinter. There is 
little doubt that the calculated topograph faithfully 
reproduces all of the experimentally observed fringe 
details. However, we again notice that in the region of 
the direct image D the simulations underestimate the 
observed intensity. In this case the decreased intensity 

(a) (b) 

(c) (d) 

Fig. 7. (a) Experimental section and (b) traverse topograph of the 
fault in Fig. 8; Fe K,q radiat ion, /ad = 8, h =- 111. (c) and (d): 
computer  simulations of faults in (a) and (b). 

(a) (b) 

Z 
(c) (d) 

Fig. 6. (a) Experimental section and (b) traverse topograph of ex- 
trinsic symmetric fault in silicon; +It, - u ,  Cu K,t~ radiation, h = 
111,/M = 3-8. (c) and (d): computer simulations of the faults in 
(a) and (b). 

,1| 

IIT0,1I A=0 A=-~ A=-~ A=n 4 

Fig. 8. Experimental section pattern of Dauphine twin in quartz 
compared with simulation with and without a shift d along the 
twin plane (after Katagawa et al., 1975). 
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Fig. 9. Simulations of tilt boundaries with increasing mis- 
orientation (after Katagawa et al., 1975). 

is due to the computation procedure where the use of  a 
finite step size results in neglect of  intensity near the 
margins of  the Bormann fan. 

Discussion and summary 

So far developments in X-ray topographic simulation 
methods have progressed to a point where reliable high- 
quality images can be obtained with moderate effort. In 
all likelihood there will be increased activity in this area 
as demands arise for more detailed characterization of 
defects. The advantages of  the complete simulation 
over intensity profiles taken at various regions of  the 
section topograph are similar to those in TEM work 
and have been outlined by Head e t  a l .  (1973). The 
principal virtue is that all aspects of  the X-ray topo- 
graph can be compared in great detail with the 
theoretical image. 

(a) (b) 

:ii i! i i i : i i  : ~ : !!:!!!ii!: :i!:'-.7;~i'ii!!i: iii!!i: :iiiii:ii!:iiiiiiiii 

L. Z..Z.. : Z • , "  ."Z'.."TY"2.."7~Z~.'~..~.;.'¢~Y~Z:~'::;: "":ZZZ;':~ V'TZ 
7: Z; Z: ~ 7".: 7LZ.Z." . . - ' : : Z . ' _ . £ . ' ~ . ~ : ~ . ~ . ~ Z Z ; ~ Z Z  :Z':YZZ::: Z::::: 

(c )  ( d )  

Fig. 10. Observed and simulated section topographs of a dislocation: (a) experimental and (b) simulated topograph (Balibar & Authier, 
1967): (c) computer simulation of the same defect (Epelboin, 1974); (d) most recent simulation on an IBM experimental teleprinter by 
Epelboin (1979). Progress in the time required for simulation: 42, 21 and 15 min for (b), (c) and (d) respectively. 
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A common characteristic apparent in all of the X- 
ray simulations examined so far is that the theoretically 
simulated image appears to underestimate the experi- 
mentally observed intensity in the region where the 
direct beam intersects the relevant defect (i.e. the direct 
image). All the experimental evidence shows con- 
siderably greater intensity in this region, as, for 
example, along HI in Fig. 6(a) for a stacking fault. 

The reasons for the discrepancy in intensity between 
theory and experiment are not obvious. We enumerate 
various possible causes. 

(1) For stacking faults there may, in addition to the 
displacement u, be other distortions giving rise to long- 
range strain fields which contribute to the intensity and 
have not been taken into account. Much is known 
(Patel, Jackson & Reiss, 1977) about the particular 
stacking faults we have studied and the presence of 
long-range strain fields seems doubtful for the following 
reasons: (a) Previous experiments (Maher, Staudinger 
& Patel, 1976) have revealed precipitate colonies 
associated with the center of these faults. These regions 
are of the order of microns in size at best and their 
strain fields are expected to drop off as 1/r 2. The faults 
themselves are several hundreds of microns in size. 
Hence large regions of the fault should be out of range 
of the strain fields of the central colony of defects. 
When the fault sizes are smaller there is direct TEM 
evidence for large regions of precipitate-free faults 
(Maher, Staudinger & Patel, 1976). (b) If electrically 
active impurities on a scale not detectable by TEM are 
present in the vicinity of the fault plane, we expect these 
to be revealed by charge-collection scanning electron 
microscopy. With this technique (Kimerling, Leamy & 
Patel, 1977), however, we observe a temperature- 
dependent electrical contrast effect at the fault plane 
which can be attributed to the fault itself and not to an 
impurity. 

(2) We examine briefly whether the theoretical 
approach used can underestimate the intensity observed 
experimentally. For planar defects the theoretical 
treatment of wave fields due to spherical waves makes 
use of the stationary-phase method to evaluate the 
integral representing the wave field in the crystal. This 
involves setting the first derivative of the phase factor 
[dG(s)/ds] = 0 [see p. 50 of Kato et al. (1967) for 
details]. The wave field in the diffracted-beam direction 
contains a second-derivative term G"(s) in the 
denominator which is assumed to be large compared to 
G'(s) = 0. If we suppose that for some reason this con- 
dition does not hold and G"(s) is small, the theoretical 
calculated intensity will be large. In other words if con- 
ditions exist where the assumptions in the stationary- 
phase method break down the theory should give a 
higher intensity. Our observations show that exactly the 
contrary is true and the theoretically calculated image 
displays relatively less intensity than the experimental 
section topograph. It is not possible at present to 

determine on the basis of the above simple arguments 
the origin of the excess intensity in the experimental 
section topographs. In particular, the actual theoretical 
problem is very complex since other assumptions, such 
as a slowly varying amplitude, are also explicit in the 
stationary-phase method. In any case extensive quanti- 
tative calculations would be necessary before any firm 
statements about the nature of the approximations can 
be made. 

For other kinds of planar defects such as twins and 
grain boundaries the section-pattern simulations reveal 
the extreme sensitivity of the images to small changes 
in misorientation or displacement. Thus section 
topographs can be used as a very sensitive quantitative 
method for characterizing this class of planar defects. 
The details of twin and grain-boundary faults are 
discussed more fully by Katagawa and co-workers (in 
preparation). With regard to line defects, simple 
geometric criteria regarding visibility of dislocation 
contrast in X-ray topographs (Jenkinson & Lang, 
1962) have long been used for establishing Burgers 
vectors of dislocations. In certain instances, for reasons 
not as yet completely clear, the simple geometric 
criteria give ambiguous results (Barns, Freeland, Kolb, 
Laudise & Patel, 1978). In such cases simulation 
methods for line defects demonstrated by Balibar & 
Authier (1967) and developed by Epelboin (1974) 
should prove invaluable in characterizing and identify- 
ing the observed dislocation contrast. 

I thank N. Kato for clarifying the arguments for the 
calculated theoretical intensity using the stationary- 
phase method. It is a pleasure to acknowledge the 
assistance of P. E. Freeland with the experiments, and 
B. C. Wonsiewicz with the computing and simulation 
procedures. 
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Abstract 

Dynamical diffraction calculations have been made by 
use of the periodic-continuation assumption for the 
diffuse scattering in electron diffraction patterns and for 
electron microscope images of single split interstitials in 
gold crystals for thicknesses up to 200 /k in order to 
demonstrate the strong fluctuations of scattering with 
thickness. The diffuse scattering from distributions of 
defects in crystals, described in terms of correlation 
functions, can be written in terms of 'dynamical factors' 
for each type of individual defect. These dynamical 
factors multiply the same Fourier transforms of 
correlation functions as are used in kinematical theory 
to give the effect of dynamical scattering on the 
diffraction intensities. Calculations of dynamical fac- 
tors have been made by multi-slice dynamical diffrac- 
tion methods for unit changes in atomic scattering 
factors and for atom displacements in gold and 
aluminum crystals in [001] orientation for thicknesses 
up to 100 A. With increasing thickness the dynamical 
factors show rapidly reducing fluctuations with crystal 
thickness and become more nearly isotropic except for 
the effects of Kikuchi bands which are seen to develop. 

* This paper was presented, by invitation, at the ACA Dynamical 
Diffraction Symposium held at the University of Oklahoma, 22 
March 1978, honoring Paul P. Ewald on the occasion of his 
ninetieth birthday. 

1. Introduction 

Difficulties arise in the evaluation of electron scattering 
from defects and disorder in crystals because of the 
strong dynamical diffraction effects occurring even in 
very thin samples. While it is possible to write formal 
expressions for scattered amplitudes which are 
sufficiently accurate for the interpretation of any forsee- 
able experimental observations with fast electrons 
(energy greater than about 20 keV), it is not in general 
feasible to make accurate calculations of the dynamical 
scattering effects for both the sharp Bragg reflections 
and the continuous background of diffuse scattering in 
diffraction patterns. The incentive to find approximate 
methods to deal with particular experimental situations 
has been considerable because of the significance of 
electron scattering methods for the study of perturba- 
tions of the periodicity of crystals, but as the power of 
the experimental methods has been increased the 
requirements for better approximations in the 
theoretical modelling have also been increased. 

The use of a column approximation with, usually, a 
two-beam approximation and considerations limited to 
Bragg reflection amplitudes has served for much of the 
electron microscope study of dislocations and other 
extended crystal defects with medium-resolution im- 
aging (10 A or greater) for many years (Hirsch, Howie, 
Nicholson, Pashley & Whelan, 1965). Improved 
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